If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x-256=0
a = 1; b = 3; c = -256;
Δ = b2-4ac
Δ = 32-4·1·(-256)
Δ = 1033
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1033}}{2*1}=\frac{-3-\sqrt{1033}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1033}}{2*1}=\frac{-3+\sqrt{1033}}{2} $
| -5(z-74)=-35 | | 2n=4(8) | | 2y+40=4(y+8) | | 3(a-6)+a=6a-38 | | 7(h+3)=91 | | 45=-5(v-4)-(8v+4) | | 19/38=x/22 | | e-12=17 | | .25x+32=x+11 | | 4x+32=-4+4(1+9x) | | -(x-7)=-1-5x | | w/5+19=27 | | 0=50,000(2t−1)(t−5) | | 15.5-0.5x=12.5 | | 4(3+7n)+5=7n+38 | | 2(4x-7)=-6 | | X+72+x+118=180 | | -9b−6=-10b | | 20-n=7(3n+6) | | -26=4w-2 | | -12.5+0.5x=12.5 | | 9x+9=9(1+9x) | | 108+42=d | | 32-2x=-5(x+2)-4x | | 3r+18-5r=12+3r-10r | | 9(x-5)=15+3x | | 8(x-7)=-38-x | | -12.5-0.5x=-12.5 | | z^2=9/64 | | u+24=3u=7u | | 1-3p=-(1+4p) | | 179=123-x |